

地軸の傾きによる季節変化を理解するための教材開発 ~「サン・アースくん」と大気差の近似関数について~ 山田 洋(佐賀市立富士中学校)

1. はじめに

文部科学省の中学校学習指導要領解説理科 編[1]によると、地軸の傾きと年周変化に関す る取り扱いは以下の様になっている。

地軸の傾きについては、例えば、季節ごとに 太陽の南中高度や昼夜の長さを継続的に観 測させ、それらの年周的な変化は、地軸が傾 いていることから説明できることを見いだ させることが考えられる。その際、地軸が傾 いていないとしたら南中高度や昼夜の長さ はどうなるか考えさせるのもよい。さらに、 南中高度の変化に伴う気温の変化について も触れて、四季の生じる理由を考察させるこ となどが考えられる。

生徒に南中高度や昼夜の長さの季節変化を 地軸の傾きと関連づけて考えさせる場合に、 地軸の傾きを自由に変えることができ、年間 を通した昼夜の長さや南中高度のデータの比 較ができる教材があれば、生徒が思考すると きのツールとして大変役に立つ。しかし、今 までにそのような教材は見たことがなかった。

そこで、生徒が地球儀などの3次元的なモ デルを使い、南中高度や昼夜の長さの季節変 化を地軸の傾きと関連づけて思考するときの 補助となるような教材を開発する。

2. シミュレーションソフトについて

具体的には、図1、図2の様に、地軸の傾 きを変化させたとき(0度、23.4度、90度等) の昼夜の長さや南中高度の年周的変化をグラ フによって比較させ、季節変化が生じる原因 は地球が地軸を傾けながら公転していること を生徒自ら発見できるようなシミュレーショ ンソフトを開発する。

そのシミュレーションソフト(図3、図4) は、「太陽」と「地球」の相互の位置関係を 表しながら、季節変化や種々の現象を探るこ とができるソフトウェアという意味を込め 「サン・アースくん」と名付けた。

http://www.saga-ed.jp/workshop/edq01460/a-su/

図3 「サン・アースくん」のメイン画面

天文教育 2013 年 1 月号 (Vol. 25 No. 1)

地軸の傾きによる季節変化を理解するための教材開発

図4 「サン・アースくん」のサブ画面

シミュレーションソフトを利用すると「視 覚的に理解しやすい」「数値も正確に出すこ とができる」「処理が早い」などの利点があ り、抽象的な概念も理解しやすくなり、正確 な値が出てくるので、観察記録結果とも容易 に比較できるようになる。処理速度も速いの で、生徒の思考の中断もなくなると考える。

現在、この「サン・アースくん」は開発途 中であり、授業に活用し、生徒へのアンケー トを採りながら、バージョンアップを図って いる。現在のバージョンは 1.94 であり、以下 の機能を持たせている。

 ○地軸の傾きを自由に変化させることができる。(現実の世界では起こり得ない現象のシ ミュレーション)

○現在、過去、未来の世界中の昼の長さ・夜 の長さ、日の出・日の入りの時刻、南中時刻・ 南中高度等の値を表示することができる。

○地球の軌道が楕円の場合と円の場合など離
心率を自由に変化させることができ、楕円軌
道効果を調べることができる。

○南中時の太陽の位置・地軸の方向・北極星

を表示することができ、太陽の通る道や昼夜 の長さなど直感的に理解することができる。 〇地球外から地球を見た図を表示することが でき、地軸の傾きによる昼夜の長さの変化や 南中高度の変化を直接見て理解することがで きる。

○入力した緯度、経度の位置を世界地図に表 すことができる。

○地名をクリックすることにより、緯度・経 度の値を入力することができる。

○世界地図をクリックすることにより、緯度・経度の値を入力することができる。

○1 年間分のデータを計算し、その結果をデ ータ表示画面に出力することができる。

○計算結果を csv 形式のファイルに保存でき るので、出力されたデータは他の表計算ソフ トでも読み込み可能である。また、html で保 存することができる。

○Google Earth から位置情報を取得したり、
Google Earth の位置情報を指定したり連携
することができる。

3. 教師用指導書にも紹介

今年度から、中学校においても新しい教育 課程が実施され、それに伴い教師用指導書も 改訂された。「サン・アースくん」は大日本 図書 理科の世界 3年 教師用指導書[2]に 新しく紹介された。この、教師用指導書には、 「サン・アースくん」の緯度・経度、年月日 を指定して、日の出・日の入りの時刻を出す 等の基本的な活用の方法が紹介されている が、誌面の都合上、1年間のデータを出す機 能やその活用法、より発展的な活用方法など については触れていない。そこで、次に「サ ン・アースくん」の教師用指導書に掲載され なかったこと等を中心に紹介する。

4. 発展的な活用等について

「サン・アースくん」を活用すると、実際

天文教育 2013 年 1 月号 (Vol. 25 No. 1)

の観測結果(日の出・日の入りの時刻、南中 高度、南中時刻等)から、それを再現できる 地軸の傾きを生徒自ら求めることができる。 今までとは逆の発想である。このことにより、 地軸は1年中同じ方向に傾いていることも確 認できる。これは、シミュレーションソフト を利用して初めて確かめることができること であり、シミュレーションソフトならではの 活用方法である。今まで、地軸の傾きは、23.4 度であると知識的に覚えるしかなかったが、 生徒自ら確かめることができるので、「サン・ アースくん」を活用することにより教える方 法や内容等も変わってくると思われる。

この他にも、「サン・アースくん」を活用 して、以下のような発展的な学習をすること ができる。

・金星(地軸の傾きが 180 度)、天王星(地 軸の傾き約 90 度)のシミュレーション

・白夜等の再現(社会科との合科)

・ 楕円軌道効果確認(高校理物、地学の応用)

年間のデータを出す機能を使うと、地球の 公転の様子や太陽光の当たり具合をシミュレ ートしながら確認でき、視覚的に理解するこ とができる。また、データ処理画面では、日 の出・日の入りの時刻や南中高度の値をグラ フ化できるので、生徒が発展的な学習を行う ときの手助けとなる(図5)。

5. 大気差について

このようなシミュレーターとして発展的な 活用を行うためには、生徒達の要求する様々 な現象を正確に再現することが必要である。 また、教育的活用だけでなく、専門的な分野 に活用できるようにするためにも、南中高度 や昼夜の長さの値を正確に出すことが求めら れる。そのためには大気差を考慮することが 必要不可欠である。

大気差とは大気によって浮き上がって見え る効果であるが、太陽や星の位置計算には必 要な要素であり、ラドーの算定[3]が有名であ る。その値は気温 10°C、気圧 1013.25hPa における大気差を表し、平均大気差と呼ばれ ている。

この値は Z=(90 度-高度)の増加関数と して表すことができる。

また、大気差と平均大気差の関係は、 T:地上の気温(°C), P:地上の気圧(hPa) として、以下の式で与えられる。

大気差=平均大気差×

(273.15/(263.15+T))(P/1013.25)

理科年表[4]で紹介されている近似関数は tanZ の冪乗で展開し近似したものであった

天文教育 2013 年 1 月号 (Vol. 25 No. 1)

が、図6の様にZ=90度で発散してしまうの で、この関数だけでは低高度の大気差を正確 に再現することができない。

また、長沢[5] が紹介している平均大気差 の関数は tan の関数で、Z が 0~90 度までの 範囲を1つの関数で表すことができるが、今 回の計算で平均大気差誤差の絶対値の平均が 12.26 秒, 最大が 302.3 秒もあり、正確な南 中高度を計算するには精度が良くないことが 分かった(図7)。

図7 平均大気差誤差の絶対値の比較

そこで、私は(expZの冪乗+Zの冪乗)で 展開し、Ngraph[6]を使用し、パラメータの フィッティングを行うことによって、以下の 近似関数を見いだすことができた。 H:高度(度), Z=90-H, R:平均大気差(秒) として以下のように表すことができる。

 $R=a_0(exp(bZ)-1)+a_1(exp(2bZ)-1)+a_2(exp(3bZ)-1)$ $+a_3Z+a_4Z^2+a_5Z^3+a_6Z^4+a_7Z^5+a_8Z^6$ ただし、定数の値は次のように与えられる。 b = 0.285, $a_0 = 5.7453490e-09$, $a_1 = 2.1745089e-20$, $a_2 = 1.3091426e-31$, $a_3 = 8.3280687e-01$, $a_4 = 3.3848859e-02$, $a_5 = -2.1456130e-03$, 天文教育 2013 年 1 月号 (Vol. 25 No. 1)

 $a_6 = 6.8675736e-05$, $a_7 = -9.8321307e-07$, $a_8 = 5.6997993e-09$

図6はこの近似関数をグラフ化し、他の近似 関数と比較したものである。また、図7は平均 大気差のそれぞれの近似関数の誤差の絶対値 を比較したものである。私の近似関数はラドー の算定の値を Z=0~90 度において最大絶対誤 差 0.6 秒、平均絶対誤差 0.26 秒で再現すること ができ、Z=90度で発散することもない。

6. おわりに

今後は、この平均大気差の近似関数を「サ ン・アースくん」に組み入れバージョンアップ を図っていく。また、授業で活用した実践事例 の報告も行っていきたい。

文 献

- [1] 文部科学省 中学校学習指導要領解説 理科編, 平成20年7月
- [2] 大日本図書 理科の世界 3 年 教師用 指導書 (PP.197)
- [3] 国立天文台(1997)理科年表【天 83】(159)
- [4] 国立天文台(2012)理科年表【天 83】(159)
- [5] 長沢 工(2001)「日の出・日の入りの計算」 地人書館
- [6] 「Ngraph」

http://www2e.biglobe.ne.jp/~isizaka/

山田 洋